Partial Reuse AMG Setup Cost Amortization Strategy for the Solution of Non-Steady State Problems
نویسندگان
چکیده
The partial reuse algebraic multigrid (AMG) setup cost amortization strategy is presented for the solution of non-steady state problems. transfer operators are reused from previous time steps, and system matrices smoother rebuilt on each AMG hierarchy levels. It shown example modelling a two-fluid dam break scenario that may decrease preconditioner by 40 $$\%$$ to 200 . total compute decreased up 20 , but specific outcome depends fraction step initially takes.
منابع مشابه
Fundamental Steady state Solution for the Transversely Isotropic Half Space
Response of a transversely isotropic 3-D half-space subjected to a surface time-harmonic excitation is presented in analytical form. The derivation of the fundamental solutions expressed in terms of displacements is based on the prefect series of displacement potential functions that have been obtained in the companion paper by the authors. First the governing equations are uncoupled in the cyl...
متن کاملSetup for steady state XAS
a) Ecole polytechnique Fédérale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland b) Ecole polytechnique Fédérale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSBBSP, CH-1015 Lausanne, Switzerland c) Paul Scherrer Institut, CH-5232 Villigen, Switzerland. d) Laboratori Nazionali di Frascati, Istituto Nazionale di Fisic...
متن کاملsemi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method
در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...
15 صفحه اولNON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS
A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lobachevskii Journal of Mathematics
سال: 2021
ISSN: ['1995-0802', '1818-9962']
DOI: https://doi.org/10.1134/s1995080221110093